756 research outputs found

    From Auditable Quantum Authentication to Best-of-Both-Worlds Multiparty Quantum Computation with Public Verifiable Identifiable Abort

    Full text link
    We construct the first secure multiparty quantum computation with public verifiable identifiable abort (MPQC-PVIA) protocol, where PVIA security enables outside observers with only classical computational power to agree on the identity of a malicious party in case of an abort. Moreover, our MPQC is the first quantum setting to provide Best-of-Both-Worlds (BoBW) security, which attains full security with an honest majority and is secure with abort if the majority is dishonest. At the heart of our construction is a generic transformation called Auditable Quantum Authentication (AQA) that publicly identifies the malicious sender with overwhelming probability. Our approach comes with several advantages over the traditional way of building MPQC protocols. First, instead of following the Clifford code paradigm, our protocol can be based on a variety of authentication codes. Second, the online phase of our MPQC requires only classical communications. Third, our construction can achieve distributed computation via a carefully crafted protocol design, which can be adjusted to an MPQC that conditionally guarantees output delivery

    Group Signatures and Accountable Ring Signatures from Isogeny-based Assumptions

    Get PDF
    Group signatures are an important cryptographic primitive providing both anonymity and accountability to signatures. Accountable ring signatures combine features from both ring signatures and group signatures, and can be directly transformed to group signatures. While there exists extensive work on constructing group signatures from various post-quantum assumptions, there has not been any using isogeny-based assumptions. In this work, we propose the first construction of isogeny-based group signatures, which is a direct result of our isogeny-based accountable ring signature. This is also the first construction of accountable ring signatures based on post-quantum assumptions. Our schemes are based on the decisional CSIDH assumption (D-CSIDH) and are proven secure under the random oracle model (ROM)

    Voluntary running delays primary degeneration in rat retinas after partial optic nerve transection

    Get PDF
    Running is believed to be beneficial for human health. Many studies have focused on the neuroprotective effects of voluntary running on animal models. There were both primary and secondary degeneration in neurodegenerative diseases, including glaucoma. However, whether running can delay primary or secondary degeneration or both of them was not clear. Partial optic nerve transection model is a valuable glaucoma model for studying both primary and secondary degeneration because it can separate primary (mainly in the superior retina) from secondary (mainly in the inferior retina) degeneration. Therefore, we compared the survival of retinal ganglion cells between Sprague-Dawley rat runners and non-runners both in the superior and inferior retinas. Excitotoxicity, oxidative stress, and apoptosis are involved in the degeneration of retinal ganglion cells in glaucoma. So we also used western immunoblotting to compare the expression of some proteins involved in apoptosis (phospho-c-Jun N-terminal kinases, p-JNKs), oxidative stress (manganese superoxide dismutase, MnSOD) and excitotoxicity (glutamine synthetase) between runners and non-runners after partial optic nerve transection. Results showed that voluntary running delayed the death of retinal ganglion cells vulnerable to primary degeneration but not those to secondary degeneration. In addition, voluntary running decreased the expression of glutamine synthetase, but not the expression of p-JNKs and MnSOD in the superior retina after partial optic nerve transection. These results illustrated that primary degeneration of retinal ganglion cells might be mainly related with excitotoxicity rather than oxidative stress; and the voluntary running could down-regulate excitotoxicity to delay the primary degeneration of retinal ganglion cells after partial optic nerve transection

    Experience Based Quality Control in IMRT Treatment Planning of High Risk Post-Prostatectomy Prostate Cancer with RapidPlan

    Get PDF
    Purpose: To develop a knowledge based planning (KBP) model with RapidPlan (Varian Medical Systems, Palo Alto, USA) for the treatment of high risk post-prostatectomy prostate cancer. The model was trained on a knowledge database of high quality treatment plans from the national clinical trial RTOG 0621, then tested as a QA tool. Methods: An initial dosimetric analysis was carried out to identify high quality plans from clinical trial RTOG 0621. Treatment plans for patients enrolled in the trial were scored according to the system used by the Imaging and Radiation Oncology Core (IROC) of the National Clinical Trials Network (NCTN) of the NCI to assess adherence to the trial protocol. Of the 80 plans enrolled in the trial 39 were chosen for the training sample. Another subset of 8 plans, orthogonal to the training sample, was chosen for the validation sample to ensure that the model accurately predicts dose volume histograms (DVHs) for all critical structures. The validation plans were then re-optimized with the model in order to test its effectiveness as a tool for planning QA. DVHs of the re-optimized plans were compared with those of the original clinical plans. Normal tissue complication probabilities and tumor control probabilities were calculated with the Lyman-Kutcher-Burman (LKB) model before and after re-optimization to determine the effect on patient outcome. Results: The RapidPlan prostate model was shown to accurately predict estimated DVH bands for all plans in the validation sample that matched the geometry of the training sample. Three treatment plans in the validation sample were geometric outliers with respect to the training sample leading to inaccuracies in the model predictions for the cone down phase of these treatment plans. All of the re-optimized plans showed increased dose sparring to the bladder and rectum respectively without lose of target coverage. The average reduction in NTCP was 0.34 ± 0.21 % for the bladder and 0.11 ± 0.25 % for the rectum with corresponding p-values of 0.116 and 0.668. The average TCP for the prostate bed decreased slightly from 97.05 % to 96.54 % with a p-value of 0.149. Due to limited statistics the changes reported in these numbers are not statistically significant as indicated by the p-values. Although the average values are inconclusive the model was effectively used to identify sub-optimal treatment plans which were improved through re-optimization with the model. For treatment plan 0621c0027 the NTCP decreased from 0.35 % to 0.06 % for the bladder and from 0.10 % to 0.06 % for the rectum while the TCP increased from 96.78 % to 96.87 %. Conclusions: The RapidPlan prostate model developed in this study is an effective tool for monitoring the quality of IMRT treatment plans for high-risk post prostatectomy prostate cancer

    Best-of-Both-Worlds Multiparty Quantum Computation with Publicly Verifiable Identifiable Abort

    Get PDF
    Alon et al. (CRYPTO 2021) introduced a multiparty quantum computation protocol that is secure with identifiable abort (MPQC-SWIA). However, their protocol allows only inside MPQC parties to know the identity of malicious players. This becomes problematic when two groups of people disagree and need a third party, like a jury, to verify who the malicious party is. This issue takes on heightened significance in the quantum setting, given that quantum states may exist in only a single copy. Thus, we emphasize the necessity of a protocol with publicly verifiable identifiable abort (PVIA), enabling outside observers with only classical computational power to agree on the identity of the malicious party in case of an abort. However, achieving MPQC with PVIA poses significant challenges due to the no-cloning theorem, and previous works proposed by Mahadev (STOC 2018) and Chung et al. (Eurocrypt 2022) for classical verification of quantum computation fall short. In this paper, we obtain the first MPQC-PVIA protocol assuming post-quantum oblivious transfer and a classical broadcast channel. The core component of our construction is a new authentication primitive called auditable quantum authentication (AQA) that identifies the malicious sender with overwhelming probability. Additionally, we provide the first MPQC protocol with best-of-both-worlds (BoBW) security, which guarantees output delivery with an honest majority and remains secure with abort even if the majority is dishonest. Our best-of-both-worlds MPQC protocol also satisfies PVIA upon abort

    Attosecond Time-Domain Measurement of Core-Level-Exciton Decay in Magnesium Oxide.

    Get PDF
    Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5  fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process

    Long Non-coding RNAs Contribute to the Inhibition of Proliferation and EMT by Pterostilbene in Human Breast Cancer

    Get PDF
    Background: There is increasing evidence that long non-coding RNAs (lncRNAs) are involved in the process of carcinogenesis and treatment using chemotherapy. Pterostilbene, a phytochemical agent with natural antioxidant and anti-inflammatory properties, has been shown to modulate oncogenic processes in many cancers. However, there has been limited research on the association between pterostilbene and the expression of lncRNAs.Methods: MCF7 breast cancer cells were treated with various concentrations of pterostilbene and their gene expression profile was analyzed by quantitative real-time PCR, Western blotting and immunofluorescence.Results: Treatment with pterostilbene inhibited cell proliferation and epithelial-to-mesenchymal transition (EMT), and increased cell apoptosis, autophagy and ER stress. The Akt/mTOR pathway was downregulated, but p38 MAPK/Erk signaling was activated in cells following treatment with pterostilbene. Pterostilbene increased the expression of the lncRNAs MEG3, TUG1, H19, and DICER1-AS1 whereas the expression of LINC01121, PTTG3P, and HOTAIR declined. Knockdown of lncRNA H19 resulted in a reduction of the cell invasion, with the cells becoming more sensitive to pterostilbene therapy.Conclusions: These results suggest that efficient optimum disruption of lncRNA expression might possibly improve the anti-tumor effects of phytochemical agents, thus serving as a potential therapy for breast cancer

    Round Efficient Secure Multiparty Quantum Computation with Identifiable Abort

    Get PDF
    A recent result by Dulek et al. (EUROCRYPT 2020) showed a secure protocol for computing any quantum circuit even without the presence of an honest majority. Their protocol, however, is susceptible to a ``denial of service\u27\u27 attack and allows even a single corrupted party to force an abort. We propose the first quantum protocol that admits security-with-identifiable-abort, which allows the honest parties to agree on the identity of a corrupted party in case of an abort. Additionally, our protocol is the first to have the property that the number of rounds where quantum communication is required is independent of the circuit complexity. Furthermore, if there exists a post-quantum secure classical protocol whose round complexity is independent of the circuit complexity, then our protocol has this property as well. Our protocol is secure under the assumption that classical quantum-resistant fully homomorphic encryption schemes with decryption circuit of logarithmic depth exist. Interestingly, our construction also admits a reduction from quantum fair secure computation to classical fair secure computation

    Genetic and molecular analysis of the anthocyanin pigmentation pathway in Epimedium

    Get PDF
    IntroductionFlower color is an ideal trait for studying the molecular basis for phenotypic variations in natural populations of species. Epimedium (Berberidaceae) species exhibit a wide range of flower colors resulting from the varied accumulation of anthocyanins and other pigments in their spur-like petals and petaloid sepals.MethodsIn this work, the anthocyanidins of eight different Epimedium species with different floral pigmentation phenotypes were analyzed using HPLC. Twelve genes involved in anthocyanin biosynthesis were cloned and sequenced, and their expression was quantified.ResultsThe expression levels of the catalytic enzyme genes DFR and ANS were significantly decreased in four species showing loss of floral pigmentation. Complementation of EsF3’H and EsDFR in corresponding Arabidopsis mutants together with overexpression of EsF3’5’H in wild type Arabidopsis analysis revealed that these genes were functional at the protein level, based on the accumulation of anthocyanin pigments.DiscussionThese results strongly suggest that transcriptional regulatory changes determine the loss of anthocyanins to be convergent in the floral tissue of Epimedium species
    • …
    corecore